
MMI-RADIO

Developers Guide

 1

DRAFT 0.2

MARS-ALE

MMI-RADIO

Developers Guide

For v3.00 Build 1.0.0.0

POC for this document is:

NNN0WWL/NNN0ASL-14 NC

nnn0wwl@navymars.org

nnn0wwl@marsale.org

MARS-ALE support forum:

http://groups.yahoo.com/group/MARS-ALE/

mailto:nnn0wwl@navymars.org
mailto:nnn0wwl@marsale.org
http://groups.yahoo.com/group/MARS-ALE/

MMI-RADIO

Developers Guide

 2

OVERVIEW

The MMI-RADIO capability empowers the end user to take charge of their own radio control and

the commands sent to their HF SSB transceiver for MARS-ALE operation. MMI-RADIO

provides the user access to the Man Machine Interface (MMI) command interpreter to a means to

create a custom radio control library of MACRO files. This enables the user to support any

make/model of HF SSB radio that supports remote control that have not yet or may never be

added to MARS-ALE via the linked at build time Radio Control Library (.LIB) or to experiment

with radio features that are not provided by the standard Radio Control support.

The MMI-RADIO concept is similar to the DLL-RADIO concept in that the user develops their

own radio control capability to a set of interface rules. However there is no need to know how to

program in any particular computer programming language that will support creating a Windows

32 bit Dynamic Link Library (DLL) to the specification detailed for the DLL-RADIO interface.

Instead the MMI-RADIO concept makes use of the ASCII MMI commands RDCMD and

HEXRDCMD to create MACRO’s in a library of MMI-RADIO class files. MARS-ALE executes

this MACRO (.MAC) files at specific points during its execution in support of radio control.

However, the MMI-RADIO interface does not provide the flexibility of the DLL-RADIO

interface which itself does not provide the flexibility of the standard Radio Control Library. As

such MMI-RADIO cannot support radios that require any type of Polling, ACK/NAK, Keep-

alive-pings, RS232 Breaks, on-the-fly calculated command packet checksum requirements,

process status from the radio or perform any other two-way radio remote control

communications. The MARS-ALE Radio Control Library can support any type of radio remote

control communications requirements and the DLL-RADIO interface can support many but not

all. Thus depending on the make/model radio in question, the MMI-RADIO interface may not be

the suitable interface solution.

In addition MMI-RADIO has the inherent limitation of using the MMI interpreter which is a slow

to process commands compared to compiled code and MMI-RADIO is dependent on file I/O

speed of the host computer as we are loading the MACRO’s from a library of MACRO files.

However today’s hard drives are fast and Solid State Drive (SSD) technology that is replacing the

hard drive is even faster.

The MMI-RADIO specification herein details the specific files that must exist, regardless of their

actual need to control a particular radio, as well as the files that must exist to control any radio. In

addition the files required based on the user’s configuration selections such as use of CAT PTT or

CAT ATU are detailed. The required library of radio specific MMI based MACRO (.MAC) files

or collectively the MMI-RADIO Library of files for the particular make/model radio to be

controlled must be stored in the \MMI-RADIO\ subdirectory.

To the end user there is little to no difference in the use of MMI-RADIO verses there other radio

control interface methods if properly written for the specific radio. On the ALE Options dialog

the “Radio Type” selection of MMI-RADIO or MMI-RADIO_HS must be made.

MMI-RADIO

Developers Guide

 3

RADIO TYPE MMI-RADIO

To use MMI-RADIO it must be the radio type selection made on the ALE Options dialog

as seen below. MMI-RADIO supports both CAT ATU and CAT ANT SW if the radio

being implemented via MMI-RADIO is so equipped.

However MMI-RADIO does not fully support the Radio Emulation Port (REM) CAT

Server mode in that there is not direct on-the-fly frequency control of the radio

implemented. In all other aspects the current REM port implementation is supported by

the use of MMI-RADIO.

RADIO PORT PARAMETERS

In MARS-ALE regardless of the actual radio type in implemented with MMI-RADIO or MMI-

RADIO_HS as the selected “Radio Type”, the default radio port parameters of 9600 N81 will be

applied. For other serial radio port control parameters you will need to use the custom port

parameters setup by clicking the “Radio 1 Com Port” button.

In addition TCP/IP support for Radio Control is on the “To Do” list where MMI-RADIO_TCP

will be provided in the future.

RADIO ADDRESSING

Should a radio make/mode require Radio Addressing, the MMI Commands used in the various

MMI-RADIO[command class].MAC file shall provide the radio addressing.

MMI-RADIO

Developers Guide

 4

MMI RADIO COMMANDS SYNTAX

Command Syntax:

DELAY nn..nnnn

For use with both RADCMD or HEXRADCMD.

Where nn..nnnn supports 10ms to 1000ms (1 second) of timing delay.

Each line with DELAY nn..nnnn command statement will provide for a delay between commands

sent to the radio. Thus if the implemented radio make/model requires 100ms pacing between

commands the use of DELAY 100 would be made.

CR1

For use with RADCMD only. Adds a single Carriage Return to the message sent to the radio

when used as an argument to RADCMD.

CR2

For use with RADCMD only. Adds a two Carriage Returns to the message sent to the radio when

used as an argument to RADCMD.

LF1

For use with RADCMD only. Adds a single Line Feed to the message sent to the radio when used

as an argument to RADCMD.

LF2

For use with RADCMD only. Adds two Line Feeds to the message sent to the radio when used as

an argument to RADCMD.

CRLF

For use with RADCMD only. Adds a Carriage Return and Line Feed to the message sent to the

radio when used as an argument to RADCMD.

RADCMD [Argument1..Argument5]

or

HEXRADCMD [Argument1..Argument30]

RADCMD supports radio make/models using an ASCII command set whereas HEXRADCMD

supports any command set.

The commands RADCMD and HEXRADCMD can be used in lower or uppercase.

MMI-RADIO

Developers Guide

 5

Arguments entered on the same line as RADCMD or HEXRADCMD must delimited by a

SPACE character. When the radio protocol supports stacking commands with no spaces then the

data string is looked at as one Argument by RADCMD. Due to the nature of HEXRADCMD

each byte must be separated by a SPACE character.

Any data that can be sent using RADCMD can be translated to HEX for sending with

HEXRADCMD should any special characters not supported by RADCMD be required to control

the radio.

To make use of RADCMD or HEXRADCMD the user MUST know the remote control protocol

for their particular make/model radio.

The number of RADCMD or HEXRADCMD statements used in a MACRO file must be kept to a

minimum to keep processing time to a minimum. This is especially true when in Multi-Channel

ALE operation where the radio is being updated during Scanning, Sounding, making Linking

Calls or responding to Linking Calls. What this means is the stacking of commands when

possible in the use of a single RADCMD or HEXRADCMD is used to send multiple commands

to the radio at one time.

Below are some examples of the use of RADCMD and HEXRADCMD in the creation of

MACRO’s for radio control purposes.

Here is an example of sending the Frequency of 10Mhz. to a Kenwood radio on VFO A:

radcmd FA00010000000;

Here is an example of stacking commands in sending both Frequency and Mode as one argument

to a Kenwood radio on VFO A as a single argument to RADCMD where the semi-colon

termination is used for each command packet sent to the radio:

radcmd FA00010000000;MD2;

Here is an example of sending the same commands separated by a SPACE character and thus as

two arguments to RADCMD:

radcmd FA00010000000; MD2;

It is obvious that as Kenwood allows stacking commands very efficiently, as such the limit of 5

arguments with RADCMD is rather moot. However, the particular Kenwood radio in question

may not be able to process all the commands as fast as they can be sent depending on the

sequence of commands and some pacing or time delay between commands may be required. This

is true when the radio commands are coded in C++ and compiled. However the use of MMI

processing itself adds built in delays. So it’s a matter of working with the particular make/model

radio to determine what is acceptable.

Here is an example of sending 3 arguments by RADCMD consisting of Frequency to a Ten Tec

RX-340 receiver where a single carriage return termination is required:

radcmd $1F 10.000000 cr1

MMI-RADIO

Developers Guide

 6

HEXRADCMD supports sending HEX bytes to radios such as ICOM and old TEN-TEC models,

older YAESU models and others. The process of using HEXRADCMD is similar to the use of

RADCMD except that each byte of the radio command must be entered as a HEXRADCMD

Argument, which requires a space character be inserted between each data byte of the radio

command.

HEXRADCMD also supports the sending of command to radios that used a mixture of printable

and non-printable characters, a good example being Cubic receivers which require one or more

start bytes that are non-printable, followed by the receiver address and command and then a

command terminator type.

To set the frequency on a Cubic R3030 receiver that requires three start bytes mixed with other

characters would like the following when sent to the radio where the pound (#) sign represents the

two characters that follows to be a HEX byte in a serial spy monitor tool:

#02#02#0201F01200000#0D

Broken down there are three HEX start bytes: #02#02#02

The R3030 set to ASCII address: 01

The ASCII frequency information is: F01200000

The radio command string termination is a carriage return as HEX byte: #0D

The same radio command packet represented completely in HEX would be:

#02#02#02#30#31#46#30#31#32#30#30#30#30#30#0D

To send this command to the R3030 using HEXRADCMD you would enter:

hexradcmd 02 02 02 30 31 46 30 31 32 30 30 30 30 30 0D

Here are some examples for ICOM and YAESU models that take into account the actual ICOM

radio model HEX address, when using HEXRADCMD you can substitute 00 for the actual radio

address you are directly sending these commands to the radio. Thus for the ICOM 746PRO

examples below you would change the third byte which is the radio address from 66 to 00 for the

address, 00 is the ICOM universal listener address to send the same to command to all devices on

the bus if you were using more than one radio at a time.

Set ICOM 746PRO using factory address 66h to USB at 14.109Mhz:

hexradcmd FE FE 66 E0 05 00 90 10 14 00 FD FE FE 66 E0 06 01 FD

Set ICOM 746PRO using factory address 66h to USB at 14.109Mhz:

hexradcmd FE FE 66 E0 05 00 90 10 14 00 FD

Set ICOM 746PRO using factory address 66h to USB:

hexradcmd FE FE 66 E0 06 01 FD

MMI-RADIO

Developers Guide

 7

Set ICOM 746PRO using factory address 66h to LSB:

hexradcmd FE FE 66 E0 06 00 FD

Set ICOM 746PRO using factory address 66h to USB-D:

hexradcmd FE FE 66 E0 06 01 FD FE FE 66 E0 1A 06 01 FD

Set ICOM 746PRO using factory address 66h to LSB-D:

hexradcmd FE FE 66 E0 06 00 FD FE FE 66 E0 1A 06 01 FD

Set ICOM 7200 using factory address 76h to USB-D: (NOTE: USB-D/LSB-D selection differs

with 7200 vs. all previous ICOM models)

hexradcmd FE FE 76 E0 06 01 FD FE FE 76 E0 1A 04 01 01 FD

Set ICOM 7200 using factory address 76h to LSB-D:

hexradcmd FE FE 76 E0 06 00 FD FE FE 76 E0 1A 04 01 01 FD

Set Yaesu FT847 to USB at 14.109Mhz:

hexradcmd 01 00 00 00 07 01 41 09 00 01

Set Yaesu FT847 to 18.106Mhz:

hexradcmd 01 81 06 00 01

Set Yaesu FT847 to USB:

hexradcmd 01 00 00 00 07

Set Yaesu FT847 to LSB:

hexradcmd 01 00 00 01 07

When creating a MACRO to control the radio of interest, the DataBar when MMI is checked can

be used to test the radio response to the MACRO. A Trace display of the command packets sent

to the radio while doing so or when actually executing a MACRO file can also be enabled.

MMI CHANGE: SENT RADIO COMMAND

The normal use of RADCMD and HEXRADCMD command via all command line interfaces

generates the display of a message to the engineering window such as:

[07:37:05][FRQ 02046500][MMI CHANGE: Sent radio command MD2;]

However when the radio type is “MMI-RADIO” this automatic confirmation or RADCMD and

HEXRADCMD use is disabled.

MMI-RADIO

Developers Guide

 8

To make use of this facility in troubleshooting the development of MMI-RADIO class files the

user needs to enable the feature using the MMI command ENABLE TRACEMMIRADIO. To

again disable the use of DISABLE TRACEMMIRADIO is required. Then each MMI-RADIO

MACRO file processed will display its radio command packets as seen below when manually

stepping from channel 1 to channel 2. It is recommended that this trace facility NOT be enabled

during scanning operation as it is a heavy load to process.

[07:49:25][CHN 02][MMI CHANGE: Sent radio command MD2;]

[07:49:25][CHN 02][MMI CHANGE: Sent radio command FA00003349000;]

[07:49:22][CHN 01][MMI CHANGE: MMI-RADIO TRACE ENABLED]

MMI-RADIO

Developers Guide

 9

MMI-RADIO MACRO CLASS FILES

Each of the MMI-RADIO class files will reside in the \MMI-RADIO\ sub directory under the

directory containing the MARS-ALE .EXE file and will use the master naming convention of:

MMI-RADIO_[command class].DAT

MMI-RADIO FILE CLASSES:

QS/S -

QS/S MACRO class file naming convention:

MMI_RADIO_ENABLE_QSS.MAC

MMI_RADIO_DISABLE_QSS.MAC

If the radio supports setup per the QS/S requirements then the code required to enable and disable

QS/S is required else the files can be left blank

PRECONFIUGRATION -

PRECONFIUGRATION MACRO file naming convention:

MMI_RADIO_PRECONFIUGRATION.MAC

This file is executed just after opening the radio serial port at the point where “MMI-RADIO

being initialized” is displayed prior to “MMI-RADIO has been initialized” as seen in the

Engineering Windows as depicted below.

[05:14:02][CHN 00][Radio Setup: MMI-RADIO has been initialized]

[05:14:02][CHN 00][Radio Setup: MMI-RADIO being initialized]

It should be noted that all of this happens prior to any radio control being executed which can be

seen by either CHN or FREQ as selected being all 0’s.

It must be noted that the more commands issued and more less command stacking used, the

longer these two files will take to execute. As the MMI_RADIO_PRECONFIGURTION file is

executed at program start when the radio port is opened, thus it will delay the start up process of

the tool. It is also executed again should radio type selections be changed. Thus too many radio

parameters being changed at program start may be noticed as the program GUI comes to life.

REMOTE -

REMOTE MACRO files naming convention:

MMI_RADIO_ENABLE_REMOTE.MAC

MMI_RADIO_DISABLE_REMOTE.MAC

These files support radios that must be commanded to enter and exit radio Remote Control

operation, such as is required with many older Yaesu, JRC and other older make/model of radios.

MMI-RADIO

Developers Guide

 10

DEINITIALIZE -

DEINITIALIZE MACRO file naming convention:

MMI_RADIO_DEINITIALIZE.MAC

The MMI_RADIO_DEINITIALIZE is executed at program termination, here the speed of

processing is of little concern and will not be noticed.

MODE -

MODE MACRO files naming convention: MMI_RADIO_MODE_[xxx..xxxxx].MAC where

xxx..xxxxx represents the MARS-ALE Scan Group Mode for RX where the supported modes for

normal operation are:

USB and LSB as follows:

MMI_RADIO_MODE_USB.MAC

MMI_RADIO_MODE_LSB.MAC

In support of DATA ports the mode selections in the software are USB-D, LSB-D that

correspond to:

MMI_RADIO_MODE_USB_D.MAC

MMI_RADIO_MODE_LSB_D.MAC

For use with commercial hardware TNC/Modem there is support of FSK, FSK-R and RTTY as

well, where those files would be:

MMI_RADIO_MODE_FSK.MAC

MMI_RADIO_MODE_FSK_R.MAC

MMI_RADIO_MODE_RTTY.MAC

Most MMI-RADIO libraries will only require MMI_RADIO_MODE_USB.MAC where

MMI_RADIO_MODE_USB-D.MAC will be the next most common need.

It is only the MODE MACRO files for the mode used in the Scan Group channels that are

required. Where if USB-D or LSB-D is being used then the MIC port version is still required for

Voice follow-on using the RED PTT button on the button bar to switch from the DATA port to

the MIC port for TX and back again on RX.

CHANNEL -

CHANNEL MACRO files naming convention: MMI_RADIO_CHANNEL_[n..nnn].MAC where

n..nnn represents the MARS-ALE Scan Group channel number where the overall range is 1..256

in one Scan Group or the total of all Scan Groups. At a minimum Channel files corresponding to

the Scan Group in use must exist for the radio being implemented.

For example, if the Scan Group consists of channels 1 through 10 there would be 10 CHANNEL

class files required in the \MMI-RADIO\ sub directory as follows:

MMI-RADIO

Developers Guide

 11

MMI_RADIO_CHANNEL_1.MAC

MMI_RADIO_CHANNEL_2.MAC

MMI_RADIO_CHANNEL_3.MAC

MMI_RADIO_CHANNEL_4.MAC

MMI_RADIO_CHANNEL_5.MAC

MMI_RADIO_CHANNEL_6.MAC

MMI_RADIO_CHANNEL_7.MAC

MMI_RADIO_CHANNEL_8.MAC

MMI_RADIO_CHANNEL_9.MAC

MMI_RADIO_CHANNEL_10.MAC

If there are one or more other Scan Groups consisting of addition channels then MMI-RADIO

files of the CHANNEL class must exist for those channels as well. However there need not be

files for all 256 channels that can be supported unless actually in use.

The CHANNEL class of MMI-RADIO MARCRO could contain one MMI command for setting

the discrete Frequency matching the Scan Group channel Frequency. It could also contain radio

Frequency and Mode commands matching the Scan Group channel Mode. Then too it could

contain the radio Memory channel command to select the corresponding programmed radio

memory channel matching the Scan Group channel information.

At scanning start the correct MODE class file will be called once. The MODE class file which

must exist to avoid an error message, it can be left empty if mode requirements are always

addressed in the channel file.

However for use of DATA modes and the RED PTT support, it is best to not enter the mode into

the CHANNEL class file.

During scanning if the mode changes from channel to channel then the correct MODE class file

will be made executed. The MODE class file which must exist to avoid an error message, can be

left empty if mode requirements are always addressed in the channel file.

In testing MMI-RADIO it has been found that the file I/O does not present any negative effects

on the use of the higher 5ch/sec. and 10ch/sec. scan rates as tested with a Kenwood TS-480S

which is capable of supporting those scan rates.

However this testing was performed using when two different Windows 7 laptops with

conventional hard disks vs. Solid State Drives. Where one laptop was of rather recent

manufacture and where the other was originally designed as a hardware compliant host for the

MS-Vista OS and later upgraded.

Testing was also performed on a current BIS-6630 Atom N2800 @ 1.86Ghz CPU based

embedded computer using an Intel 120GB 530 Series SDD and as would be expected with the

faster SDD, there were no scan rate issues.

However the use of MMI-RADIO on older versions of the Windows OS and older hardware may

not provide the same results due to both OS latency and file I/O latency times, especially at the 10

ch/sec. scan rate.

In MARS-ALE Single Channel operation the Scan Group channel Frequency and Mode

information is sent to the radio at each channel step as separate MMI-RADIO commands. It is

MMI-RADIO

Developers Guide

 12

best to only enter the Frequency information into the CHANNEL file, however if it desired to

also enter the mode, then the MODE class file which must exist to avoid an error message, can be

left empty if mode requirements are always addressed in the channel file.

Here is an example of a Channel file in setting the channel frequency for a Kenwood TS-480S

using the discrete VFO A frequency approach.

MMI-RADIO MACRO Library for TS-480S

TRI-SERVICE ALE NET CHANNEL 4

Set radio frequency 5158.0kHz

radcmd FA00005158000;

It must be noted that if the radio Memory Channel approach is taken vs. the discrete frequency

and mode approach, that for Voice vs. Data follow on, a like number of Voice and Data memories

will be required for selection via used attended MACRO use as the RED PTT approach does not

provide a channel number hook, thus discrete mode must also affect the mode change of the

memory channel mode if using USB-D.

QS/S CHANNEL -

The QS/S CHANNEL MACRO class supports QS/S operation where the QS/S MACRO class

files to ENABLE QS/S must be used when entering ALE scanning. The purpose of the QS/S

CHANNEL class files are to update the radio B VFO for TX where the radio type being

implemented uses the Split VFO approach to QS/S.

The QS/S CHANNEL MACRO files have a naming convention that adds “QSS” to the

CHANNEL naming convention: MMI_RADIO_QSS_CHANNEL_[n..nnn].MAC

For each CHANNEL MACRO file there needs to be a QS/S CHANNEL file regardless or the

radio type being implemented being able to make use of them, in which case they would be

empty. Thus if there are 10 of the MMI_RADIO_CHANNEL_n.MAC class files there must also

be 10 of the MMI_RADIO_QSS_CHANNEL_n.MAC class files in the \MMI-RADIO\ sub

directory.

If the Split VFO method for the radio being implemented works, then each QS/S CHANNEL file

must contain the remote control commands to setup the radio for the TX frequency and mode if

required as well. For some make/model radios a single command equates VFO A with that of

VFO B, ICOM for example is such a case where the command is there “EQUATE” sequence.

For other makes of radio there can be a lot of steps required, an example of this situation are

Kenwood radio models. Here is an example of the steps required for setting up the B VFO for

Kenwood to TX during QS/S scanning.

Below is the first approach that was taken in creating a QS/S MACRO file for the TS-480S. It

followed C++ coded Kenwood QS/S flow which is time proven in the update of the B VFO.

MMI-RADIO MACRO Library for TS-480S

TRI-SERVICE ALE NET CHANNEL 4

MMI-RADIO

Developers Guide

 13

Setup B VFO for radio frequency 5158.0kHz

Set radio RX to VFO B

radcmd FR1;

Allow radio to settle

delay 25

Set radio TX to VFO A

radcmd FT0;

Allow radio to settle

delay 100

Change TX mode

radcmd MD2;

Allow Radio time to settle

delay 25

Change TX frequency

radcmd FB00005158000;

Allow Radio time to settle

delay 25

Set radio RX to VFO A

radcmd FR0;

Allow radio to settle

delay 25

Set radio TX to VFO B

radcmd FT1;

Allow radio to settle

delay 25

However it was determined in actually testing with the TS-480S that it took 6 seconds to process

all the RADCMD statements, which is like 6 times what is permitted in ALE timing.

So instead of seeing the 6 second time difference in the following two lines from the Engineering

Window display at the point of a Sounding transmission as seen here:

MMI-RADIO

Developers Guide

 14

[02:59:30][FRQ 02046500][RADIO: PTT now ACTIVE]

[02:59:24][FRQ 02046500][SOUNDING: SENDING TIS SOUNDING]

We need to keep the QS/S MACRO file processing time down to less than 1 second were no

difference in time or just a second later displayed as seen below.

[03:00:24][FRQ 03349000][RADIO: PTT now ACTIVE]

[03:00:24][FRQ 03349000][SOUNDING: SENDING TIS SOUNDING]

In the following version there is no use of the “DELAY” statement for command pacing and

heavy using command stacking to minimize the use of the RADCMD statement came in under

the time requirement to execute the MACRO.

MMI-RADIO MACRO Library for TS-480S

TRI-SERVICE ALE NET CHANNEL 4

Setup B VFO for radio frequency 5158.0kHz

Set radio RX to VFO B and TX to VFO A and update Mode and Freq.

radcmd FR1;FT0;MD2;FB00005158000;

Set radio RX to VFO A and TX to VFO B

radcmd FR0;FT1;

The stacking of four Kenwood commands with no spaces represents one argument to the first

RADCMD and then stacking the remaining two commands adds the needed pacing and reduces

the entire MACRO file to just to MMI statements.

For a user that can assure themselves that the B VFO will always be in the proper Mode, the

MD2; command can be removed and the first statement shortened to:

radcmd FR1;FT0;FB00005158000;

However doing so only aids in the radio speed of processing commands, it does not affect the

MMI processing as we are already down to just one RADCMD statement for this group of radio

commands.

If however the TS-480S could not deal with the stacking of these commands as such we would

have had to made use of another RADCMD statement.

PTT -

PTT MACRO files naming convention support the Microphone (MIC) port and the DATA (DIG)

port that a radio may have where the CAT PTT commands for the ports may differ. At a

minimum, if CAT PTT is used, the MIC port PTT files must exist with the correct commands for

the radio being implemented.

For the MIC port the PTT class files naming convention is:

MMI_RADIO_MIC_PTT_ON.MAC

MMI-RADIO

Developers Guide

 15

MMI_RADIO_MIC_PTT_OFF.MAC

For the DIG port when USB-D or LSB-D are selected as the mode the PTT class files naming

convention is:

MMI_RADIO_DIG_PTT_ON.MAC

MMI_RADIO_DIG_PTT_OFF.MAC

These files are only called if CAT PTT is active where the “DIG” are only called if USB-D or

LSB-D is selected as the mode for the scan group channel in use.

The RED PTT button on the Data Bar when used, will only use the MIC port for PTT where if

USB-D or LSB-D is the mode selected for the given scan group channel, the mode will be

switched to USB or LSB respectfully for TX and then set back to USB-D or LSB-D respectfully

upon RX.

If there is no specific PTT commands for the given radio being implemented for DIG port use,

then the same PTT ON and PTT OFF commands would be entered in both types of PTT files.

MUTING -

The MUTING MACRO files naming convention is:

MMI_RADIO_UNMUTED_AUDIO.MAC

MMI_RADIO_MUTED_AUDIO.MAC

If “Use CAT for MUTE” is not checked on the ALE Options dialog this class of files does not

need to exist.

The values for Muted and UnMuted audio on the ALE Options dialog are meaningless when

“MMI-RADIO” is the selected radio type as the values will be user set in the MARCO files.

The “MMI_RADIO_UNMUTED_AUDIO.MAC” file will contain the command to set the

desired normal RX volume level, however it can be set to any level the user desires.

The “MMI_RADIO_MUTED_AUDIO.MAC” file will contain the command to set the RX

volume level to 0, however it can be set to any level the user desires.

MMI-RADIO

Developers Guide

 16

ATU -

The ATU MACRO files naming convention:

MMI_RADIO_ATU_ON.MAC

MMI_RADIO_ATU_OFF.MAC

MMI_RADIO_ATU_START.MAC

MMI_RADIO_ATU_STOP.MAC

It CAT ATU is not selected for use these files will never be called and thus do not need to exist.

ANT PORT -

The ANT PORT MACRO files naming convention:

MMI_RADIO_ANT_PORT_1.MAC

MMI_RADIO_ANT_PORT_2.MAC

MMI_RADIO_ANT_PORT_3.MAC

MMI_RADIO_ANT_PORT_4.MAC

Most radios only support selectable 2 ANT ports if any, thus support for 4 should be enough for

MMI-RADIO needs.

If ANT PORT is 0 for all scan group channels then none of these files will ever be called and thus

do not need to exist.

ATTN -

The ATTN MACRO files naming convention:

MMI_RADIO_ATTN_ON.MAC

MMI_RADIO_ATTN_OFF.MAC

If ATTN is not selected for any Scan Group channels the files will never be called and thus do

not need to exist.

MMI-RADIO

Developers Guide

 17

MINIMUM REQUIRED FILES

The following screen cap depicts an example of the minimum number of MMI-RADIO files

required for a 10 channel Scan Group beginning with channel 1. In this example there is no QS/S

support and USB and USB-D are depicted as the radio operating modes for Voice/DATA. If just

using USB then the highlighted file for USB-D support can be ignored. If QS/S is required, the

QS/S files which are empty in this image, need to be configured and the QS/S Channel files need

to be added.

MMI-RADIO

Developers Guide

 18

SYSTEM .DAT FILES

The following system .DAT files may also be of interest to the user of MMI-RADIO where the

use of RADCMD or HEXRADCMD statement execution can be made independent of the MMI-

RADIO class files. The exception being the use of CONFIG.DAT which CANNOT be used as it

executes before serial ports are opened.

STARTUP.DAT - Executes MMI commands at program start after radio port is opened.

SCANSTART.DAT - Executes MMI commands at the start of scanning.

LINKED.DAT - Executes MMI commands after an ALE inlink state is established.

UNLINKED.DAT - Executes MMI commands when the ALE inlink state is cleared.

SCANSTOP.DAT - Executes MMI commands when Scanning is stopped.

SHUTDOWN.DAT - Executes MMI commands at the termination of the application.

Any use of the radio control MMI commands in these files will generate status radio command

messages being displayed to the Engineering Window.

